If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+6x-5=0
a = 1; b = 6; c = -5;
Δ = b2-4ac
Δ = 62-4·1·(-5)
Δ = 56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{56}=\sqrt{4*14}=\sqrt{4}*\sqrt{14}=2\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{14}}{2*1}=\frac{-6-2\sqrt{14}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{14}}{2*1}=\frac{-6+2\sqrt{14}}{2} $
| -4(2x+5)+x+2=−11 | | 2/7(x–9)=–4 | | 1/3e-3=4 | | 10-3x+5/6=311/12-x/2/2 | | -4(x+5)+3-1=-13 | | 2x+1+5x=1 | | 2x-5x+25=0 | | 3x+27+1x+25=180 | | p+8=22 | | -3w+1=0 | | q+4=19 | | 5x+11x=34 | | 40-2x=120 | | 6b+5=7b-5 | | 3x/42=1/7 | | 4+6x=-+7× | | 30=2x-5+3x | | 3x−28=−4x | | 7-9(-h-19)=-2h-20 | | 12-34x=-56 | | 8-9(-h-19)=-2h-20 | | (10x+15)+5=180 | | 5x+10-3x=4 | | -19x-15=-148-19x= | | -14s=-2(8s+7) | | 30+50.45x=57.95 | | 9-6(3m-1)=-18m+2m-19 | | −5(2x−5)−3x−5=7 | | x/12=13=18 | | 9(-2n-11)-14=8+6n-13n | | 3(-u-11)=-4u | | Y=-1.3x+7 |